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bstract

A fuel cell system model is necessary to prepare and analyse vibration tests. However, in the literature, the mechanical aspect of the fuel cell
ystems is neglected. In this paper, a neural network modelling approach for the mechanical nonlinear behaviour of a proton exchange membrane
PEM) fuel cell system is proposed. An experimental set is designed for this purpose: a fuel cell system in operation is subjected to random and
wept-sine excitations on a vibrating platform in three axes directions. Its mechanical response is measured with three-dimensional accelerometers.
he raw experimental data are exploited to create a multi-input and multi-output (MIMO) model using a multi-layer perceptron neural network
ombined with a time regression input vector. The model is trained and tested. Results from the analysis show good prediction accuracy. This

pproach is promising because it can be extended to further complex applications. In the future, the mechanical fuel cell system controller will be
mplemented on a real-time system that provides an environment to analyse the performance and optimize mechanical parameters design of the
EM fuel system and its auxiliaries.
2007 Elsevier B.V. All rights reserved.
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Nomenclature

f(i) search direction of the ‘Levenberg–Marquardt’
method

FPE final prediction error
G(i)(θ) the gradient of L(i)(θ)
i number of inputs
j number of outputs
L(i)(θ) minimization criterion of the ‘Levenberg–

Marquardt’ method
n number of delays
N number of points in the training set
Nei input i time regressor
Nsj output j time regressor
qij Lipschitz coefficient
r̂εε(τ) autocorrelation of the prediction error
r̂Uε(τ) cross-correlation between the inputs and the pre-

diction error
R(i)(θ) the Hessian of L(i)(θ)
T number of points in the pruning set
u1(t) excitation signal vector
u2(t) sampling frequency vector
V number of points in the validation set
VN Levenberg–Marquardt minimization criterion or

training error
VT test error
W1 vector of weights between inputs and the hidden

layer
W2 vector of weights between the hidden layer and

outputs
Y(t) measured outputs
Ŷ (t) predicted outputs
z total number of time regressors
ZN training data set
ZT pruning data set
ZV validation data set

Greek symbols
ε prediction error
θ vector of weights
σ2

P(t) variance of the prediction error
ϕ(t) time regression vector

. Introduction

conversion efficiencies, fuel cells are the best candidate to
become the primary source of power in the future [1]. Therefore
worldwide attention has been focused on their development.

A fuel cell is a device that can directly convert chemical
to electric and thermal energy. Among different kinds of fuel
cells, the proton exchange membrane fuel cell (PEM) has the
advantage of a low-operational temperature (20–100 ◦C), high-
power density and light weight. PEM has gained a lot of attention
and is considered as the most promising fuel cell technology in
the future and a potential alternative power source [2]. It fits at
best the requirements of the transportation systems. However
in order to implement fuel cells in transportation systems, we
need to master the mechanical behaviour of fuel cell systems and
the influences of mechanical loads on their structure. Durability
versus mechanical loads is also a matter of concern.

Therefore, experimental investigations under mechanical
loads are necessary to acquire further knowledge. In order to
optimally pilot and control the tests, highly efficient models with
good performance in static and dynamic operational conditions
are required.

Before enumerating these models, it is useful to distinguish
the two terms: ‘dynamic’ and ‘mechanical’ in the fuel cell
field. The term ‘dynamic’ is related to the fuel cell dynamical
physicochemical aspect as transient behaviour while ‘mechan-
ical’ indicates its mechanical vibrating aspect as eigen modes
and frequencies.

In the literature, a large number of steady-state models are
available, which mainly focus on designing the PEM and choos-
ing the operating point [3]. Baschuk and Xianguo [4] have
developed a model considering all three reasons of polarization
in a unified fundamental approach. Voss et al. [5] suggested
a technique for water removal from the PEM. Nguyen and
White [6] developed a model to investigate the effectiveness
of three humidification designs. Fuller and Newman [7] sim-
ulated a PEMFC operation in conditions of moist gas in the
electrodes. Bernardi and Verbrugge [8] formulated a simpli-
fied one-dimensional model for liquid water transport in porous
electrodes. Wang et al. [9] studied gas–liquid two-phase flow
and transport in air operated PEMFC as well as direct methanol
fuel cell. Djilali and Berning [10] presented an overview of the
role of various transport phenomena in fuel cell operation and
some of the physical and computational modelling challenges.
Du and Shi [11] exposed a computational fluid dynamic (CFD)
model for a PEM by taking into account the catalyst layer with
agglomerate structures.

There are relatively few dynamic models proposed in the
Because of a worldwide increase in air pollution and power
emand, an efficient and clean generation of electrical energy
as become a necessity. With low emissions and very high-

p
f
p
a

ublished works that have studied transient behaviour [12] and
uel cell control: a quasi-three-dimensional dynamic model for
hysical, chemical and electrochemical processes in PEM [13],
model to predict responses of the electric load on the cell
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y emphasising the temperature response on the dynamic load
14], a model predictive control-based strategy [15], an exact
inearization approach to create a dynamic model [16], a study
f a fuel cell stack dynamic response including the nonlinear-
ties [17], a model of a fuel cell hybrid system connected to a
onlinear load power [18].

These fuel cell static and ‘dynamic’ models provide a funda-
ental foundation for exploring mechanisms and understanding

hysical phenomena in the PEM. In spite of advances in mod-
lling, several of these physical methods are not accurate enough
ecause of the complex nonlinear nature of the fuel cell. Usu-
lly, modelling is done with models based on the knowledge
f physicochemical phenomena. These models require a good
nowledge of the process parameters. In most cases, these
arameters are difficult to determine for an operating fuel cell
ystem [19]. One way to solve this problem is to exploit raw
xperimental data by creating a “black box” model which
equires no preliminary knowledge about the system [20]. Sev-
ral techniques can be implemented to create a black box model
ut a well-designed artificial neural network (ANN) model
rovides useful and reasonably accurate input–output relations
ecause of its excellent multi-dimensional mapping capability.
t can predict the desired output variables faster and more accu-
ately than a physical model. For this reason, ANN has been
xtensively employed in various areas of science and technology.

All applications of neural networks fuel cell models proposed
n publications concern the ‘dynamic’ aspect such as: an adap-
ive fuzzy identification model based on input–output sampled
ata [21], a dynamic recurrent neural network model for fuel
ell dynamic operating modes [22], a Q-Newton neural net-
ork model which estimates the voltage considering different
perating conditions and delivered current [23], a multi-layer
erceptron (MLP) model that inputs pressures and temperatures
t the stack and outputs voltage of the fuel cell [24,25], a hybrid
eural network model consisting of an ANN component and
physical component that takes into consideration the effect

f Pt loading [26], a back-propagation feed-forward network
nd a radial basis function network to predict the cell voltage
nd to study the effect of Pt loading [27]. All of these studies
ere conceived to predict the cell voltage or cell power density

mA cm−2) or to determine the operating temperature of PEM.
However, a model that predicts the nonlinear mechanical

esponse of a fuel cell system submitted to vibrations during
duration of time has not yet appeared in published works. In

his paper, a method based on a MIMO multi-layer perceptron
MLP) neural network combined with a time regression input
ector is proposed [28]. A specified experimental set has been
esigned and a fuel cell system, in operation, vibrated according
o the three axes.

The paper is organised as follows. Section 2 provides a gen-
ral description of the test bench which includes the vibrating
latform, the fuel cell system and the acquisition system. Sec-
ion 3 explains the neural network modelling approach. Section
illustrates simulation results for different excitations; they
re compared to experimental findings and discussed. Finally,
ection 5 concludes the paper and outlines the practical imple-
entation of the black box model.

t

t
d

Fig. 1. The vibrating platform.

. The test bench

The experimental setup is composed of a vibrating platform, a
EM fuel cell system to be modelled and an acquisition system.

.1. The vibrating platform

The vibration tests were realized by using the vibrating plat-
orm represented in Fig. 1.

The platform is composed of two tables: one for horizontal
olicitations and the other for vertical excitations. The first table
ibrates in X and Y axes directions, the second one in the Z-axis
irection. The platform has the following properties:

frequency sweeping: 6–3000 Hz,
maximum displacement of the vibrating table (peak to peak):
50 mm,
maximum velocity: 1.8 m s−1,
maximum force: 35.6 kN.

Using specific software, it is thus possible to control excita-
ions as swept sine, shocks and random vibrations. The vibration
latform also has the capacity to reproduce any kind of signals.

.2. The PEM fuel cell system

The PEM fuel cell system is considered as a mechanical
ystem to be modelled. The aim is to represent its nonlinear
echanical behaviour. The system is screwed to the vibrating
able (see Fig. 2).
The control accelerometer is directly fixed on the vibrating

able and 3 three-dimensional measurement accelerometers are
istributed on the fuel cell system (see Fig. 3).
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Fig. 2. The mechanical system fixed on the vibrating table.

.3. The acquisition system

The installation is equipped with an acquisition system. How-
ver, raw data, necessary to feed the neural model, cannot be
ccessed. For this reason, a USB interface with a new acquisition
rogram is implemented.

Another advantage of the new program is the method of
hoosing the sampling frequency. In fact, frequency bandwidth
or the realized tests varies from 6 to 1250 Hz. If data are col-
ected with a constant sample rate, its value should be around
2,500 Hz. Therefore, with excitations like swept sine, a very
arge data vector is obtained. That will lead to increase the train-
ng set dimension and eventually the model estimation time.
he processing of such a vector with common devices, even
ith powerful PCs is time consuming.
To solve this problem, the new acquisition program allows

ollection of data with a variable sampling frequency in real
ime. This permits to cover all the frequency bandwidth with a
easonable number of points.

. Modelling approach

The neural network approach for system modelling consists

f several steps, as shown in Fig. 4. During the tests, data are col-
ected. Then, the neural network structure is chosen: Hopfield,
lman networks, multi-layer perceptron (MLP) or radial basis
etworks. This stage also includes selecting inputs and outputs,

m
c
a
m

wer Sources 175 (2008) 1–17

he number of layers and number of neurons in each neural net-
ork layer. Afterwards, the data collected during the tests are
ivided into three different sets: the first and second sets are used
o estimate the model through training and pruning and the third
ne is employed to validate the model.

.1. Tests

Collecting results from several dynamic load tests is the first
tep of the procedure. Before capturing data needed to setup the
eural network, it is important to carry out tests to assess the
eneral behaviour of the system, e.g. the resonance frequencies
nd nonlinearity degree [29].

The system is excited in the three axes directions separately.
herefore, there are three models to show the system’s mechan-

cal behaviour in each of the three directions of excitations. The
rocedures for developing these models are similar. This is the
eason why only the Z-axis model is exposed in the following.

During the Z-axis direction tests, the system is excited with
wo types of vibrations:

swept sine with a frequency bandwidth from 6 to 1250 Hz and
acceleration amplitude from 0.1 to 1 g,
random vibration with frequency bandwidth from 6 to
1250 Hz, a root mean square (rms) value of 0.35 g and a max-
imum value of 0.95 g. In fact, the random vibration used here
is related to a road profile directly measured on the vehicle
where the fuel cell system is destined to be installed.

A unique neural network is created in order to model the
ystem according to these two types of excitation in the Z-axis
irection.

.2. Selection of the neural model structure

The second step deals with finding the neural network struc-
ure. A multi-layer structure of feed-forward MLP is chosen
ere because of its capability in nonlinear modelling. It has
ne hidden layer, even if the number of layers may be grad-
ally increased as greater flexibility is needed for more complex
ystems.

The network contains nine outputs (see Fig. 7) which corre-
ponds to the prediction of nine measuring channels for the three
hree-dimensional accelerometers. They are here compared with
he measurements of these accelerometers.

A point should be clarified: the excitation signal is in the Z
xis direction but the measured accelerations are in the X, Y and
axes directions.
The number of inputs has to be determined. Indeed, the only

ctual input is the acceleration subjected to the vibrating table.
owever, the neural network is fed with values of acceleration

nd measured outputs from the previous time instants. This is
nown as time regression (NNARXM), which is essential in

odelling the nonlinear behaviour and is a dominant factor in the

alculation time (see Fig. 5). It can be derived by using Lipschitz
pproach [30]. In the next paragraph, a brief presentation of this
ethod is given.
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Fig. 3. The accelerometers.
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qij = ∣∣y (tm) − y (tk)

φi(tm) − φi(tk)
∣∣ = ∣∣∂y∂φi ∣∣ , tm �= tk (5)
Fig. 4. Steps of the modelling approach.

Define the training set:

N = {[U1(t), Y1(t)], t = 1, . . . , N} (1)
hich is composed of an (2,N) imposed acceleration matrix:

1(t) = [u1(t); u2(t)] (2)
T
a

Fig. 5. A neural network with NN
wer Sources 175 (2008) 1–17

nd an (9,N) output matrix Y1(t) corresponding to the measured
utputs:

1(t) = [y1(t); y2(t); . . . ; y9(t)] (3)

here N is the total number of points in the training set.
The neural network input is the time regression vector ϕ(t),

hich is calculated as follows:

(t) = [ϕ1, ϕ2, ϕ3, . . . , ϕz]

= [u1(t − 1) u1(t − 2) . . . u1(t −Ne1) u2(t − 1) u2

× (t − 2) . . . u2(t −Ne2) y1(t − 1) y1(t − 2) . . . y1

× (t −Ns1) y2(t − 1) y2(t − 2) . . . y2(t −Ns2) . . . y9

× (t − 1) y9(t − 2) . . . y9(t −Ns9)] (4)

here Nei and Nsj are, respectively, the number of input (i) and
utput (j) time regressors, i varies from 1 to 2 and j varies from 1
o 9 and u1(t) and u2(t) are, respectively, the values of the control
ccelerometer signal and the sampling frequency corresponding
o each point.

The values of time regressors depend on the degree of nonlin-
arity computed by means of the Lipschitz coefficient. For each
ifferent input ui(t) and output yj(t), the Lipschitz coefficient is
alculated with the expression:∣∣ j j

∣∣ ∣∣ j
∣∣
he approach consists in choosing different delay couples Nei

nd Nsj. For each couple, the Lipschitz coefficients are computed

ARXM regression vector.
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Fig. 6. Lipschitz coefficient.

or all input ui(t) and output yj(t) combinations. The greatest pij

oefficients are selected to calculate the criterion:

¯nij =
( pij∏
k=1

√
nqnij(k)

)1/pij

(6)

here n = Nei + Nsj for each combination.
If n, the number of delays, is too small, the Lipschitz coeffi-

ient tends to infinity. From a certain value of n, the Lipschitz
oefficient decreases slightly.

The results of the calculations for i = 1 and j = 1 are shown
n Fig. 6. At first, the curve decreases and then stabilizes for a
recise value of Nei and Nsj. In this study, Ne1 has a value of 6
nd Ns1 a value of 3.

After the calculation of the Nei and Nsj for all the inputs ui(t)
nd the outputs yj(t), z, the total number of time regressors is
alculated by

= Ne1 +Ne2 +Ns1 + · · · +Ns9 (7)

he results of the calculations are

e1 = 6, Ne2 = 1, Ns1 = 3, Ns2 = 3, Ns3 = 5,

s4 = 3, Ns5 = 3, Ns6 = 5, Ns7 = 3,

s8 = 3 and Ns9 = 5

hat means z equals 40 (z = 6 + 1 + 3 + 3 + 5 + 3 + 3 + 5 + 3 + 3 + 5
40).
One hidden layer containing 18 neurons is initially chosen

Fig. 7). The experience showed that the number of neurons is
arge, but it will be optimized later using specific algorithms.
he nonlinear activation functions [31] for the hidden neurons
re a hyperbolic tangent type f(x) = tan h(x) with values between
1 and 1. For the output neuron, a linear activation function

(x) = x is selected. This choice results from various tests carried

ut with different activation functions on each layer.

After the choice of the neural network structure, it is trained
ccording to a minimization criterion and then optimized by a
runing technique. Finally, the model is validated. In order to

T

θ

wer Sources 175 (2008) 1–17 7

o this, data collected during the tests are divided into three
ifferent sets, one for each of these tasks.

.3. Estimate the model

This section is composed of two parts: training [32] and
runing [33] discussed, respectively.

.3.1. Training
The first set of the collected data ZN(U1, Y1) is used in the

raining. It is important that ZN includes information concerning
he global behaviour of the system like all the amplitude lev-
ls and frequencies of interest. If ZN shows redundancy for an
perating range and a lack of information for another operating
ange, the model accurately predicts in the first case but with
ifficulties in the second. During the study, a vector composed
f 2080 points (N = 2080:1520 coming from random tests and
60 from swept-sine tests) is chosen. All the values of this vector
re normalized between −1 and 1.

The model parameters (weights) are determined during the
raining. They constitute the model that will be able to give the
est prediction of the real outputs of the system. The model that
atisfies the minimal value of the following criterion is chosen:

N = 1

2N

N∑
t=1

{[Y (t) − Ŷ (t|θ)]T [Y (t) − Ŷ (t|θ)]} (8)

here N is the number of points of the training set (TS),
(t) = Y1(t) = [y1(t); y2(t); . . .; y9(t)] is the vector of real mea-
ured outputs in the TS, Ŷ (t) = [ŷ1(t|θ); ŷ2(t|θ); ...; ŷ9(t|θ)] is
he vector of the predicted outputs, and θ is the vector of weights
o be defined.

In fact, there are two types of weights:

W1, containing the weights between the inputs and the hidden
layer (40(z) × 18(initial number of neurons) = 720), and the
18 bias values for the neurons in the hidden layer.
W2, containing the weights between the hidden layer and the
outputs (18(initial number of neurons) × 9(number of out-
puts) = 162) and the 9 bias for the outputs neurons.

Thus, θ = [W2W1] is a vector containing: 720 + 18 +
62 + 9 = 909 weights.

This approach based on the minimization of VN is called
he prediction error method (PEM) [34]. Among the different
inimization methods which use the PEM criterion, the MLP

etwork combined with NNARXM regression vector uses the
Levenberg–Marquardt’ method [35]. It minimizes an approx-
mation of the criterion VN called L(i)(θ) in a neighbourhood
hich is a sphere of radius δ(i) centred around the current itera-

ion θ(i):

(i+1) = argmin
θ

(L(i)(θ)) in the neighbourhood |θ − θ(i)| ≤ δ(i)
(9)

he next iteration values are computed by the formula:

(i+1) = θ(i) + f (i) (10)
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tial neural network.
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Fig. 7. The ini

here f(i) is the search direction given by

(i) = −[R(θ(i)) + λ(i)I]
−1
G(θ(i)) (11)

here

λ(i) is a parameter that varies between 0 and infinity, whose
determination is explained in Fig. 8,
the gradient:

G(θ(i)) = dL(i)(θ)

dθ

∣∣∣∣
θ=θ(i)

= 1

N

n∑
t=1

{[ψ(t, θ(i))]
T

[y(t) − ŷ(t|θ(i))]} (12)

where

ψ(t, θ(i)) = dŷ(t|θ(i))

dθ
(13)

the hessian:

R(θ(i)) = d2L(i)(θ)

dθ2

∣∣∣∣∣
θ=θ(i)

= 1

N

n∑
t=1

{[ψ(t, θ(i))]
T

[ψ(t, θ(i))]}
(14)

To determine λ(i), there are two different methods: direct and
ndirect methods. The indirect method of Fletcher [36], pre-
ented in Fig. 8, is used here. The approach consists in computing

he ratio:

(i) = VN (θ(i)) − VN (θ(i+1))

VN (θ(i)) − L(i)(θ(i+1))
= (VN (θ(i)) − VN (θ(i) + f (i))

(VN (θ(i)) − L(i)(θ(i) + f (i))
(15) Fig. 8. Determination of λ(i).
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Fig. 9. Variation of the test error.
Fig. 10. Pruning.

Fig. 11. The final neural network after pruning.



1 of Po

w

L

3

t

n
a
e

F
o

0 V. Rouss, W. Charon / Journal

here

(i)(θ(i) + f ) = VN (θ(i)) + fTG(θ(i)) + 1
2f

TR(θ(i))f (16)
.3.2. Pruning
The principle of pruning is to initially start out with rela-

ively large network architecture and then successively prune the

p
s
o
i

ig. 12. Visualization of the prediction—random tests. (For interpretation of the refe
f the article.)
wer Sources 175 (2008) 1–17

etwork branches (weights) of one at a time until the optimal
rchitecture is found. Stopping criterions other than the quadratic
rror VN used in the training section are explored. Thus, the final

rediction error FPE and the test error VT are introduced in this
ection [37]. Both criteria provide information about the ability
f the model to reliably predict outputs for unknown entries,
.e. the second set of data ZT(U2, Y2) which is not used in the

rences to color in this figure citation, the reader is referred to the web version
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raining section. The number of points of ZT is here equal to
000.

.3.2.1. Final prediction error. The final prediction error is

xpressed in the formula:

PE = V̂M = 1

2
σ2

e

(
1 + p

N

)
(17)

T
i
t

ig. 13. Correlations for random tests. (For interpretation of the references to color i
wer Sources 175 (2008) 1–17 11

here p is the number of weights and σ2
e is the noise variance

stimated as follows

ˆ 2 = 2
N

V (θ̂, ZN ) (18)
he FEP reaches its maximum value σ2
e /2 when N tends towards

nfinity. However, as the vector of training is finite (N = 2080 in
his study), the error is always higher than σ2

e /2.

n this figure citation, the reader is referred to the web version of the article.)
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.3.2.2. Test error. Test error VT computation is based on a
econd data set ZT(U2, Y2) which is completely different from
he first data set ZN(U1, Y1) used for training. A value of VT

lose to VN means that the model obtained after the training
s accurate. In fact, the test error is composed of two types of
rror:

The bias error which appears when the optimized model is
not found in the set of candidate models defined in the neu-
ral structure selection (Section 3.2). It happens when there
are not enough neurons to model the system. This is called

undertraining.
The variance error which is due to an excessive number of
neurons in the network. This increases the number of local
minima and the variance of estimated weights. The model

i
t
b
d

ig. 14. Histograms for random tests. (For interpretation of the references to color in
wer Sources 175 (2008) 1–17

identifies not only the system but also the noise present in the
vector ZN. This case is called overtraining.

Fig. 9 shows the effects of both errors. The curve of VT

ecreases, then increases. The curve’s minimum corresponds
o the best model.

.3.2.3. Architecture of the connections. Another important cri-
erion is the choice of the best neural architecture. In fact,
he network should not be entirely connected. The principle

s to initially start out with relatively large network architec-
ure, and then prune the weights of one at a time until the
est architecture is found [38]. Fig. 10 explains this proce-
ure.

this figure citation, the reader is referred to the web version of the article.)
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Listed below is an explanation of some symbols mentioned

n the above figure:

V (i) = VN (θ̂(j), ZN ) − VN (θ̂, ZN ) (19)

δ

w
w

ig. 15. Visualization of the prediction—sine tests. (For interpretation of the referenc
rticle.)
wer Sources 175 (2008) 1–17 13

here θ̂(j) is the reduced vector of weights [39]:
V
(i)
M = VM(θ̂(j), ZN ) − VM(θ̂, ZN ) (20)

here VM is the FPE error and p1(j) is the number of remaining
eights at the jth iteration.

es to color in this figure citation, the reader is referred to the web version of the
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Fig. 11 shows how pruning affects the initial network with 18
eurons in the hidden layer. Only 16 neurons and 728 weights
re necessary.

.4. Validate the model
Model validation is performed with a third data set ZV(U3,
3) different from ZN and ZT. The validation approach is based
n three analyses: correlations between the predictions and

s
Y

f
t

ig. 16. Correlations for sine tests. (For interpretation of the references to color in th
wer Sources 175 (2008) 1–17

he measurements, visualization and reliability of the predic-
ions.

.4.1. Correlations
If the whole information concerning the dynamics of the
ystem is introduced into the model, the prediction error ε =
(t) − Ŷ (t) is independent from the particular set of data used

or validation. To prove this independence, two important func-
ions are calculated: the autocorrelation r̂εε(τ) of the prediction

is figure citation, the reader is referred to the web version of the article.)



of Po

e
t
a

r̂

r̂

3

m
g
d

3

f

•

•

4

V. Rouss, W. Charon / Journal

rror ε and the cross-correlations r̂Uε(τ) between the inputs and
he prediction error [40]. The correlations results for this study
re shown in Figs. 13 and 16:

εε(τ) =
∑N−τ
t=1 (ε(t, θ̂) − ε̄)(ε(t − τ, θ̂) − ε̄)∑N

t=1(ε(t, θ̂) − ε̄)
2 =

{
1 if τ = 0

0 if τ �= 0

(21)

Uε(τ) =
∑N−τ
t=1 (ε(t − τ, θ̂) − ε̄)√∑N

t=1(U(t) − Ū)2∑N
t=1(ε(t, θ̂) − ε̄)

2
= 0, ∀τ

(22)

.4.2. Visualization of the prediction

The graphic representation, that contains, respectively, the

easured outputs and the predictions calculated by the model,
ives an idea of the accuracy of the predictions according to
ifferent modes (see Figs. 12 and 15).

b
f

Fig. 17. Histograms for sine tests. (For interpretation of the references to color in
wer Sources 175 (2008) 1–17 15

.4.3. Prediction reliability
The prediction reliability for a given input is computed as

ollows:

Estimation of the prediction error variance compared to the
regression vector ϕ(t):

σ2
P(t) = E{ε2(t, θ̂)|φ(t)} (23)

Estimation of the interval of prediction confidence [41], see
Figs. 14 and 17, by using the estimated variance and assuming
that the prediction error has a Gaussian distribution:

Y (t) ∈ [Ŷ (t|θ̂) − σp; Ŷ (t|θ̂) + σp] (24)

. Results and discussions
For all the figures of this section, the measurement Y(t) is in
lue and the prediction Ŷ (t) is in red. The validation is realised
or two different inputs: random and swept-sine tests vector.

this figure citation, the reader is referred to the web version of the article.)
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.1. Random tests

The 9000 samples in ZV1(U3, Y3) are issued from random
ests. The results are shown in Figs. 12–14.

The comparison between the measured outputs and the one-
tep ahead predictions shows how the model describes the
ystem dynamic behaviour. Fig. 12 shows the visualization of
he nine outputs predictions. It is important to indicate that the
rediction is not the same for the nine outputs. There are two
easons for this difference:

The first reason is related to the fact that outputs 3, 6 and 9
measure the accelerations in the Z axis direction according to
the three measurement accelerometers positions. Outputs 1,
4 and 7 measure the X axis direction and outputs 2, 5 and 8
measure the Y axis directions. Therefore, it is expected that
the prediction of the outputs which measure the Z axis accel-
erations (direction of the excitation), is better because the
correlations between the excitation and these outputs have
higher values than the other outputs.
The second reason is that the dynamic response of the fuel
cell system is not the same in every part of the system. The
measurement accelerometers have different positions. There-
fore, the amplitudes of the measured responses vary with the
accelerometers positions. For example, the outputs 1 (axis
X), 2 (axis Y) and 3 (axis Z) for the first three-dimensional
accelerometer measure higher acceleration values than the
two other accelerometers.

Despite this difference, for all outputs, predictions are close to
he measured values. However, visual inspection is not enough.
or this reason, correlation results and the histogram of the
rediction error ε for all the outputs are shown in Figs. 13 and 14.

As displayed in Fig. 13, the correlation coefficients remain
round 1S.D. The autocorrelation functions of all the outputs
end to be zero and the cross-correlation functions vary in a band
anging from −0.05 to 0.05, close to zero. The result means that
he prediction error is independent of the control input. So, all the
nformation about the dynamics of the system was incorporated
nto the model. Another proof is given by the shapes of the
istograms shown in Fig. 14. The majority of the ε values are
round zero.

.2. Swept-sine tests

The 5000 samples of ZV2(U4, Y4) are issued from swept-sine
ests. The results are available in Figs. 15–17.

A good visual prediction is noticed in this section (Fig. 15).
he autocorrelation functions are shown in Fig. 16. They con-
erge towards zero and stay within a band around zero. The
ross-correlation functions vary from −0.1 to 0.1. The his-
ograms are shown in Fig. 17. They are symmetrical around
ero and have the majority of values around ε equal zero.
For the two types of excitations (random and swept sine),
redictions are within close range when compared to measure-
ents. However, the accuracy of the predictions is not the same.
he results for the swept sine are less good than the random

R

wer Sources 175 (2008) 1–17

ase but are still largely acceptable. It is related to the fact that
he training vector is composed from 1520 points coming from
andom tests for just 560 points coming from swept-sine tests.
nd for the same kind of excitation, the model predicts better in

he Z axis direction (outputs 3, 6 and 9) than the other axes.

. Conclusion

In this paper, a neural approach, using a multi-layer percep-
ron combined with ‘NNARXM’ time regression input vector,
s proposed to model the mechanical nonlinear behaviour of a
EM fuel cell system. An experimental setup is designed for

his purpose. The mechanical system is vibrated in the three
xes direction X–Z with swept sine and random vibrations. The
oal is to create models for all three axes. Only the Z axis model
s discussed here because of the methodology similarity in all
hree cases. A MIMO model is trained and validated with data
ollected from the experimental setup. The obtained results are
ccurate. This approach is promising because it may be extended
o more complex cases. Future work will deal with practical
mplementations of the black box model that involves:

The creation of a unique model for all three axes. Such a
model, which predicts the mechanical behaviour according
to the three axes directions, is very useful to reduce calcu-
lations time. In fact, inputs and outputs correlations between
different axes permit the reduction of the number of the global
neural network neurons. A second advantage is that a global
model may be used as a fuel cell system controller. It may be
implemented in a real-time system in order to provide an envi-
ronment to analyse the performance and optimize mechanical
parameters design of the PEM fuel system and its auxiliaries.
For example, durability tests versus mechanical loads are for
sure the most important tests to be carried out. The black
box model allows simulating the expected response and then
building indicators that are compared in real time with the
actual response during tests. A discrepancy warns against a
fundamental change in the system as the failure of a compo-
nent.
Creating a neural modal that can predict the best accelerom-
eters positions is a major milestone in test preparations. Thus
for the preliminary phase, it is very interesting to clamp on the
tested mechanical structure the greatest number of available
sensors. Indeed, as the knowledge about the system is a priori
rather weak, it is difficult to know where to clamp sensors in
order to get the most sensitive mechanical response to loads. A
Fourier analysis of each sensor response can drive the choice
of the sensors number and positions to keep for the main tests.
A more interesting method is the possibility to create a neural
model that can predict the best sensor positions, eventually
not used within the preliminary tests.
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